Efficient Initial Solution to Extremal Optimization Algorithm for Weighted MAXSAT Problem
نویسندگان
چکیده
Stochastic local search algorithms are proved to be one of the most effective approach for computing approximate solutions of hard combinatorial problems. Most of them are based on a typical randomness related to some uniform distributions for generating initial solutions. Particularly, Extremal Optimization is a recent meta-heuristic proposed for finding high quality solutions to hard optimization problems. In this paper, we introduce an algorithm based on another distribution, known as the Bose-Einstein distribution in quantum physics, which provides a new stochastic initialization scheme to an Extremal Optimization procedure. The resulting algorithm is proposed for the approximated solution to an instance of the weighted maximum satisfiability problem (MAX SAT). We examine its effectiveness by computational experiments on a large set of test instances and compare it with other existing meta-heuristic methods. Our results are remarkable and show that this approach is appropriate for this class of problems.
منابع مشابه
A Multi-Objective Particle Swarm Optimization Algorithm for a Possibilistic Open Shop Problem to Minimize Weighted Mean Tardiness and Weighted Mean Completion Times
We consider an open shop scheduling problem. At first, a bi-objective possibilistic mixed-integer programming formulation is developed. The inherent uncertainty in processing times and due dates as fuzzy parameters, machine-dependent setup times and removal times are the special features of this model. The considered bi-objectives are to minimize the weighted mean tardiness and weighted mean co...
متن کاملA Heuristic Algorithm for Nonlinear Lexicography Goal Programming with an Efficient Initial Solution
In this paper, a heuristic algorithm is proposed in order to solve a nonlinear lexicography goal programming (NLGP) by using an efficient initial point. Some numerical experiments showed that the search quality by the proposed heuristic in a multiple objectives problem depends on the initial point features, so in the proposed approach the initial point is retrieved by Data Envelopment Analysis...
متن کاملAn Evolutionary Local Search Method for Incremental Satisfiability
Incremental satisfiability problem (ISAT) is considered as a generalisation of the Boolean satisfiability problem (SAT). It involves checking whether satisfiability is maintained when new clauses are added to an initial satisfiable set of clauses. Since stochastic local search algorithms have been proved highly efficient for SAT, it is valuable to investigate their application to solve ISAT. Ex...
متن کاملAlgorithms for Weighted Boolean Optimization
The Pseudo-Boolean Optimization (PBO) and Maximum Satisfiability (MaxSAT) problems are natural optimization extensions of Boolean Satisfiability (SAT). In the recent past, different algorithms have been proposed for PBO and for MaxSAT, despite the existence of straightforward mappings from PBO to MaxSAT and viceversa. This papers proposes Weighted Boolean Optimization (WBO), a new unified frame...
متن کاملSolving the Maximum Satisfiability Problem Using an Evolutionary Local Search Algorithm
The MAXimum propositional SATisfiability problem (MAXSAT) is a well known NP-hard optimization problem with many theoretical and practical applications in artificial intelligence and mathematical logic. Heuristic local search algorithms are widely recognized as the most effective approaches used to solve them. However, their performance depends both on their complexity and their tuning paramete...
متن کامل